Dissection of synaptic excitability phenotypes by using a dominant-negative Shaker K+ channel subunit.

نویسندگان

  • Timothy J Mosca
  • Robert A Carrillo
  • Benjamin H White
  • Haig Keshishian
چکیده

During nervous system development, synapses undergo morphological change as a function of electrical activity. In Drosophila, enhanced activity results in the expansion of larval neuromuscular junctions. We have examined whether these structural changes involve the pre- or postsynaptic partner by selectively enhancing electrical excitability with a Shaker dominant-negative (SDN) potassium channel subunit. We find that the SDN enhances neurotransmitter release when expressed in motoneurons, postsynaptic potential broadening when expressed in muscles and neurons, and selectively suppresses fast-inactivating, Shaker-mediated IA currents in muscles. SDN expression also phenocopies the canonical behavioral phenotypes of the Sh mutation. At the neuromuscular junction, we find that activity-dependent changes in arbor size occur only when SDN is expressed presynaptically. This finding indicates that elevated postsynaptic membrane excitability is by itself insufficient to enhance presynaptic arbor growth. Such changes must minimally involve increased neuronal excitability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct frequency-dependent regulation of nerve terminal excitability and synaptic transmission by IA and IK potassium channels revealed by Drosophila Shaker and Shab mutations.

Regulation of synaptic efficacy by nerve terminal excitability has not been extensively studied. We performed genetic and pharmacological dissections for presynaptic actions of K+ channels in Drosophila neuromuscular transmission by using electrophysiological and optical imaging techniques. Current understanding of the roles of the Shab IK channel and its mammalian Kv2 counterparts is relativel...

متن کامل

Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron.

Ionic currents underlie the firing patterns, excitability, and synaptic integration of neurons. Despite complete sequence information in multiple species, our knowledge about ion channel function in central neurons remains incomplete. This study analyzes the potassium currents of an identified Drosophila flight motoneuron, MN5, in situ. MN5 exhibits four different potassium currents, two fast-a...

متن کامل

In vivo analysis of a gain-of-function mutation in the Drosophila eag-encoded K+ channel.

Neuronal Na+ and K+ channels elicit currents in opposing directions and thus have opposing effects on neuronal excitability. Mutations in genes encoding Na+ or K+ channels often interact genetically, leading to either phenotypic suppression or enhancement for genes with opposing or similar effects on excitability, respectively. For example, the effects of mutations in Shaker (Sh), which encodes...

متن کامل

Major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans.

We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K(+) channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K(+) channel motif coupled to a cytoplasmic domain...

متن کامل

Rapid, Bidirectional Remodeling of Synaptic NMDA Receptor Subunit Composition by A-type K+ Channel Activity in Hippocampal CA1 Pyramidal Neurons

The transient, A-type K+ current (IA) controls the excitability of CA1 pyramidal neuron dendrites by regulating the back-propagation of action potentials and by shaping synaptic input. Dendritic A-type K+ channels are targeted for modulation during long-term potentiation (LTP) and we have recently shown that activity-dependent internalization of the A-type channel subunit Kv4.2 enhances synapti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 9  شماره 

صفحات  -

تاریخ انتشار 2005